澳彩网手机登录|注册
澳彩网手机 >新闻 >重点新闻推荐

澳彩网手机-澳彩网网站正规吗

你也许会为女性身影的稀少而感到疑惑,这在一定程度上和更大的社会现实相关。比如,在关于职业足球队的新闻报道中,识别出的图像大多都是男性;在针对美国参众两院(女性占比为25%)的报道中,识别出的女性面孔当然要比男性少得多。

为了在数据层就尽最大可能地剔除偏差,Joy提出,应当构建更具包容性的基准数据集。为了平衡基准数据,她列出了世界上妇女在议会所占比例最高的十个国家,其中卢旺达以超过60%的女性比例领先世界。考虑到北欧国家和少数非洲国家具有典型代表性,Joy选定了3个非洲国家和3个北欧国家,通过选择来自这些国家年轻、深肤色的个体数据来平衡数据集中的皮肤等类型。

具体来看,在涉及经济相关的帖子中,女性面孔的平均尺寸比男性小19%,但在娱乐相关的内容中,女性面孔的平均尺寸比男性大7%。

本文来自公众号:全媒派(ID:quanmeipai),原标题为:《人脸识别的肤色性别偏见背后,是算法盲点还是人心叵测?》,题图来自:。

亚马逊的面部识别系统为奥普拉·温弗里的这张图片打上了男性标签,并给出了数据置信度Joy表示,现实世界中的脸部识别要比实验检测更为复杂和困难,他们建立的基准数据集也并非完全经受得住考验,“但这就好比跑步比赛,在基准测试中的出色表现,起码能保证你不会刚起步就摔倒。”

为了更好地了解这一过程中的规则,皮尤研究中心进行了一个有趣的实验,他们将自己中心工作人员的图像上传到机器视觉系统,并对图像内容进行部分遮挡,希望从中寻得规律,找到是哪些面部区域会让算法做出或改变决策。

正是基于这个更平衡的数据集,他们对亚马逊、Kairos、IBM、Face++等公司的面部识别系统进行了重新评估。在2018年8月的研究中,他们发现,亚马逊和Kairos在白人男性识别工作上表现优秀,但亚马逊对有色人种的女性面孔识别的准确率很低,仅为68.6%。

亚马逊相关负责人表示,该公司使用了超过100万张面孔数据作为基准来检测产品的准确率。但是,不要被这个看起来很大的样本迷惑了。“因为我们不知道基准数据的详细人口统计学数据。没有这些信息,我们就无法判断,是否在基准选择上,就可能埋下了种族、性别或者肤色等偏见的可能。”

研究人员还测量了图像中女性面部与男性面部的大小情况(目前的技术只能捕捉人脸的大小情况,忽略了头发、珠宝和头饰等因素的影响)。结果显示,男性面孔平均占到的图像面积更大,这种差异导致图像中男性平均面部尺寸比女性大出了10%。在Facebook的图像中,这表现为男性人物能给读者带来更大的视觉冲击。

3.https://medium.com/@Joy.Buolamwini/response-racial-and-gender-bias-in-amazon-rekognition-commercial-ai-system-for-analyzing-faces-a289222eeced

最后,当你完成选择后,图片将呈现出能影响性别分类改变的所有区域。感兴趣的读者,可以登陆皮尤研究中心网站,自己动手完成这个小实验。传送门:https://www.pewresearch.org/interactives/how-does-a-computer-see-gender/

为了减少对面部识别技术的滥用,算法正义联盟(Algorithmic Justice League)和隐私与技术中心(Center on Privacy & Technology)发起了“安全面孔承诺”(Safe Face Pledge)活动。

住房和城乡建设部科技与产业化发展中心主任刘新锋主持住博会开幕见面会并表示,党的十八大以来,党中央、国务院高度重视生态文明建设和绿色发展,推动形成绿色发展方式和生活方式是贯彻新发展理念的必然要求,必须把生态文明建设摆在全局工作的突出地位。本次住博会的举办,旨在与社会各界共同讨论谋划我国城乡建设绿色发展,促进城乡建设绿色发展工作的稳步推进,提升建设品质,不断满足人民群中对美好生活的向往。

“偏见”带来了什么?最近,包括图灵奖获得者Yoshua Bengio在内的26位AI领域顶尖研究者,在一篇公开博文中要求亚马逊立即停止向警方出售其人工智能服务Amazon Rekognition。亚马逊云计算部门前首席科学家Anima Anandkumar等人也加入了这一联合呼吁。

毕竟,算法偏见的背后,其实是我们人类自己的偏见。参考链接:1.https://www.journalism.org/2019/05/23/men-appear-twice-as-often-as-women-in-news-photos-on-facebook/

2.https://www.pewresearch.org/interactives/how-does-a-computer-see-gender/

当这些有偏差的识别系统被广泛应用到社会生活中,就可能导致更糟糕的后果。Joy Buolamwini在TED上发表题为How I"m fighting bias in algorithms的演讲

Joy提醒我们关注基准数据集的偏差。“当我们讨论面部分析技术的准确性时,是通过一系列图像或者视频测试来完成的。这些图像数据构成了一个基准,但并不是所有的基准都是平等的。”

住房和城乡建设部科技与产业化发展中心副主任姜中桥、清华大学建筑学院党委书记张悦,华锦城投副总裁崔小刚等三方代表出席了此次签约仪式。

在目前,包括亚马逊在内的很多科技公司尚未加入这一承诺。“根据我们的研究,贸然向执法部门或者政府机构出售面部识别系统将是不负责任的。”作为算法正义联盟创始人之一的Joy希望,在未来,更多的机构能加入到“安全面孔承诺”,能够负责任地、符合道义地为面部分析技术的发展付出行动。

像面部识别这样的机器视觉工具,正被越来越广泛地应用在执法、广告及其他领域,对性别的识别,是其基本功能之一。

AI的种族歧视,是算法盲点还是人心叵测?

在现实生活中,识别你周围人的性别再简单不过,但是对于计算机而言,它的工作需要经历怎样的步骤?计算机如何“看出”你的性别?“在给算法‘喂入’成千上万个图像案例后,作为一个‘成熟的算法’,面部识别系统自己就能学会如何辨别男性和女性。”这种回答虽然可以解释上文的疑问,但对于“黑箱”外的我们,可能并不容易理解这一学习过程。

相关人士介绍,绿色数字人居的技术核心,是基于大数据构建的空间数字大脑和神经引擎的人工智能系统,可以通过机器对环境进行感知、融合、学习和决策,管理智能设备24小时工作,提供健康、舒适、安全、节能的人居环境。

本文来自公众号:全媒派(ID:quanmeipai)。住房城乡建设部科技中心、清华大学CSC、华锦城投正式达成战略合作

那么,是谁在“扭曲”两性?为何有时候,算法眼中的你处在可男可女的模糊地带?进一步讲,性别之外还有哪些偏见?为了应对这种状况,我们可以做些什么?人脸识别下的性别失衡皮尤的这份报告指出,在Facebook上不同类型的新闻报道中,女性在图片中的“在场”情况始终低于男性。在与经济有关的帖子中,只有9%的图片为纯女性内容,与此形成鲜明对比的是,纯男性图像占到了69%。女性在娱乐新闻图片中拥有更多展示机会,但总体上仍低于男性。

著名非裔记者、平权运动家Ida B.Wells被识别为男性。为了减少搜索人脸所需的时间,执法部门正在大量使用性别分类。如果需匹配人脸的性别是已知的,通过简单的二分法,就可以大量减少需要处理的潜在匹配数。性别分类正广泛应用到警务活动中。

2019年11月7日,第十八届中国国际住宅产业暨建筑工业化产品与设备博览会(以下简称“住博会”)在京举办。在住博会开幕见面会上,住房和城乡建设部科技与产业化发展中心与清华大学建筑学院可持续住区研究中心(以下简称“清华大学CSC”)、华锦益泰城投置业(北京)有限公司(以下简称“华锦城投”),正式签署了《关于共同推进绿色数字人居产业发展模式研究》的战略合作协议,政、学、企联手推动人居环境绿色发展。

皮尤研究中心的一项最新研究发现,Facebook的新闻图片中,男性出现的频率是女性的两倍,且大部分的图片是关于男性的。

即便在同样的基准下,面部识别系统的准确度数字可能也会发生变化。人工智能并不完美。在这种情况下,通过提供置信度给用户更具体的判断信息是一个有用的做法。

【免责声明】本文仅代表合作供稿方观点,不代表和讯网立场。投资者据此操作,风险请自担。

偏差来自哪里?如果对比开发者自己声明的准确率和研究者们的研究结论,会发现一个有趣的事情:公司发布的数据和独立第三方的外部准确率总是有所出入。那么,是什么导致了这一差异?

在TED演讲中,Joy和大家分享了一个小故事:在同样的光线条件下,面部识别系统只能检测到浅肤色的参与者;只有戴上白色面具,才能检测出深肤色的参与者。“在人工智能工具确定人脸的身份或者辨别表情信息前,最基本的前提是,检测出人脸。但是,面部识别系统在检测黑皮肤个体上,屡次失败。我只能安慰自己,算法不是种族主义者,是自己的脸太黑了。”Joy说道。

在这个“人机博弈”的交互挑战中,你不妨也大胆猜测下,哪些部分影响了系统的判断?首先,输入一张清晰的图片到机器视觉系统,此时,不管是算法还是你,都可以清楚地判断出照片中人物的性别。接下来,照片中出现了若干方框,提示信息告诉你,“选中某一方框意味着,在图片中遮挡隐藏该部分内容,你的选择有可能影响性别判断。”

从这个角度看,皮尤研究中心用一个简化的实验,展示了用于训练算法的数据是如何将隐藏的偏差、意外的错误引入到了系统结果中。研究人员表示,随着算法正在人类社会中发挥越来越重要的决策影响力,了解它们的局限、偏差具有重要意义。

机器学习的确可以极大地提高我们处理数据的效率,但与传统的计算机程序不同,机器学习遵循一系列严格的步骤,它们的决策方式在很大程度上隐而不显,并且高度依赖于用来训练自身的数据。这些特点可能导致,机器学习工具产生更难以被人理解和提前预测到的系统性偏差。

此番联手清华大学建筑学院及华锦城投的战略合作,显示了住房和城乡建设部科技与产业化发展中心引入高校资源和社会力量落实绿色发展的决心。三方将就推动人居坏境由传统人居转型为绿色数字人居等方面达成共识与合作,利用各自在不同领域的资源优势和实践经验,共同研究绿色数字人居产业发展模式,规划未来可持续发展路径,致力于使绿色人居产业成为经济转型升级的一个着力点,并成为引领建筑产业新旧动能转换的标杆范例。

清华大学建筑学院目前已成立了可持续住区研究中心,采用人工智能及大数据技术,面向未来人居进行创新研究,并经过五年探索,取得了若干学术成果、专利技术和产业实践成果。依托清华大学及国内外顶尖研究团队的学术优势,清华大学CSC将不断推进可持续住区发展的系统化研究和应用。

不同系统对深肤色演员的识别数据不同Facebook曾宣布,在名为Labeled Faces in the Wild的数据集测试中,自己面部识别系统的准确率高达97%。但当研究人员查看这个所谓的黄金标准数据集时,却发现这个数据集中有近77%的男性,同时超过80%是白人。

此前,多伦多大学的研究人员Deborah Raji和麻省理工学院媒体实验室的研究人员Joy Buolamwini撰写了研究报告,指出亚马逊的Rekognition在检测图像中肤色较深的女性性别时,要比判断肤色较浅男性性别的错误率高得多。该研究成果也得到了学者们的支持,但亚马逊曾对两人撰写的这篇报告及研究方法提出过异议。

责任编辑:南方彩票注册

澳彩网手机版权与免责声明

凡本网注明“X月X日讯”的所有作品,版权均属澳彩网手机,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:澳彩网手机”。违反上述声明者,本网将追究其相关法律责任。

澳彩网手机授权咨询:0392-3201587

客服电话:0392-3313875 投稿箱: 2315789961@qq.com

澳彩网手机 版权所有:Copyright © hebiw.com All Rights Reserved.

河南省互联网违法和不良信息举报中心

X关闭
X关闭
友情链接: